2026/01/07 22:09 1/14 Comment déboguer un script bash ?

tutoriel

Comment déboguer un script bash ?

Introduction

Tout programme doit étre exempt de bogues avant d'atteindre le consommateur.

Les développeurs de logiciels font de leur mieux pour créer des programmes exempts de bogues.
Mais il est difficile de rendre le code parfait lorsqu'il y a des milliers de lignes.

Le débogage est un processus continu ; il vous aide a repérer immédiatement les bogues, a recueillir
des informations précieuses sur le code et a éliminer les extraits de code redondants.

Tous les langages de programmation ont des approches communes et différentes pour trouver des
bogues.

Par exemple, les programmes de débogage peuvent étre utilisés pour corriger rapidement les bogues.
Alors que les scripts shell n'ont pas d'outil spécial pour déboguer le code.

Cet article traite de diverses techniques de débogage qui peuvent étre utilisées pour créer un script
bash sans erreur.

Avant de plonger dans les méthodes, comprenons les wrappers et comment les écrire :

Qu'est-ce qu'un shell sous Linux ?

Lorsque vous démarrez I'ordinateur, le noyau obtient des informations sur le matériel connecté et
permet aux autres composants connectés de communiquer.

De plus, il gere la mémoire, le processeur, et reconnait tout nouveau périphérique.

En général, le noyau est I'épine dorsale de tout systeme d'exploitation.

Mais avez-vous déja pensé a interagir directement avec le noyau, en lui donnant une commande pour
effectuer une tache spécifique ?

Est-ce méme possible ?

Tout a fait !

Avec le shell, un programme informatique doté d'une interface interactive, n'importe qui peut
controler le noyau.

Le shell permet aux utilisateurs d'interagir avec le noyau et de lui demander d'effectuer n'importe
quelle tache.

Il existe deux shells principaux sous Unix, le shell Bourne et le shell C.

Ces deux types ont leurs propres sous-catégories.

Les différents types de shells Bourne sont Korn Shell (ksh), Almqvist Shell (Ash), Bourne Shell
Again (bash) et Z Shell (zsh).

Dans le méme temps, le shell C a ses propres sous-catégories comme C Shell (csh) et TENEX C
Shell (tcsh).

Comme mentionné ci-dessus, de tous les shells, Bash (Bourne shell a nouveau) est le shell le plus
largement utilisé et est livré en standard sur de nombreuses distributions Linux en raison de son
efficacité et de sa convivialité.

Bash est le shell par défaut de nombreuses distributions Linux et est largement utilisé par des millions
d'utilisateurs Linux.
Il est si varié et puissant qu'il peut effectuer n'importe quelle tache que vous effectueriez

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

https://nfrappe.fr/doc-0/doku.php?id=tag:tutoriel&do=showtag&tag=tutoriel

Last
update:
2022/08/13
22:15

tutoriel:programmation:deboguage:bash:start https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start

normalement dans des applications basées sur une interface graphique.
Vous pouvez modifier des fichiers, gérer des fichiers, afficher des photos, écouter de la musique, lire
des vidéos et plus encore.

Qu'est-ce qu'un script shell ?

Puisque nous avons vu l'idée de base d'un shell, passons maintenant a I'écriture de scripts shell.

Un script shell est un programme informatique qui exécute plusieurs commandes dans un shell qui
agit comme un interprete pour exécuter une fonction spécifique.

Comme mentionné ci-dessus, il existe 2 types spécifiques de shells.

Cependant, ce guide se concentre sur le shell Bourne Again (Bash).

Alors, qu'est-ce qu'un script bash ?

Sous Linux, toutes les commandes bash sont stockées dans les dossiers /usr/bin et /bin.

Par exemple, chaque fois que vous exécutez une commande, bash vérifie si elle existe ou non dans le
répertoire.

La commande s'exécutera si elle trouve dans les répertoires, sinon elle générera une erreur.

Que diriez-vous de faire une tache qui nécessite I'exécution de plusieurs commandes dans le terminal
?

Dans cette situation particuliere, les scripts bash peuvent vous aider.

Le script bash est une forme de script shell qui vous permet d'avoir des programmes qui exécutent
plusieurs commandes bash pour effectuer une tache spécifique.

Quelles sont les erreurs dans les scripts bash ?

Lorsque vous travaillez avec des scripts bash ou tout autre langage de programmation, vous
rencontrez de nombreux bogues.

Un bogue est un bogue ou un probleme dans un programme qui peut entrainer une exécution
incorrecte du programme.

Chaque langage de programmation a sa propre routine de vérification des bogues ; de méme, bash
possede également de nombreuses options intégrées pour déboguer un programme de terminal.

La gestion des erreurs et le débogage du programme sont tout aussi fastidieux.

C'est un travail qui prend du temps et qui peut s'aggraver si vous ne savez pas quels sont les bons
outils pour déboguer votre programme.

Cet article est un guide complet sur le débogage des scripts bash pour rendre votre script sans
erreur. Alors, commengons.

Comment déboguer un script bash

Lorsque vous travaillez sur de grands projets de programmation, vous rencontrez de nombreux bugs
ou problemes.
Le débogage d'un programme peut parfois étre délicat.

https://nfrappe.fr/doc-0/ Printed on 2026/01/07 22:09

2026/01/07 22:09 3/14 Comment déboguer un script bash ?

Les programmeurs utilisent généralement des outils de débogage, et de nombreux éditeurs de code
aident également a trouver des bogues en mettant en évidence la syntaxe.

Linux dispose de divers outils pour déboguer le code, tels que GNU Debugger alias gdb.
Des outils comme GDB sont utiles pour les langages de programmation qui se compilent en binaires.
Puisque bash est un langage interprété simple, il n'y a pas besoin d'outils lourds pour le déboguer.

Il existe différentes méthodes traditionnelles pour déboguer le code de script bash et I'une d'entre
elles consiste a ajouter une assertion.

Les assertions sont des conditions qui sont ajoutées aux programmes pour tester certaines conditions
et exécuter le programme en conséquence.

Il s'agit d'une méthode défensive qui aide également a trouver des bogues et a effectuer des tests.
De nombreux outils permettent d'ajouter des assertions aux scripts bash.

Eh bien, I'ajout d'assertions est I'une des vieilles astuces traditionnelles.

Des ensembles de drapeaux/options sont disponibles dans bash pour déboguer un script bash.

Ces options peuvent étre ajoutées au le shebang dans le script, ou ajoutées lors de I'exécution dans le
terminal.

Voyons donc les différentes méthodes de bash pour déboguer un script bash.
Comment déboguer un script bash avec I'option verbose (-v)
L'une des approches les plus simples pour déboguer un script bash consiste a utiliser I'option -v,

€galement connue sous le nom de verbose.

L'option peut étre ajoutée a un shebang ou explicitement spécifiée avec le nom de fichier du script
lors de son exécution.

L'option verbose exécutera et imprimera chaque ligne de code en tant que processus d'interprétation.

Expliquons cela avec un exemple de script bash :

b_script.sh

#! /bin/bash
echo "Enter numberl"
read numberl
echo "Enter number2"
read number2
“$numberl” -gt "$number2"

echo "Numberl greater than number2"
"$numberl” -eq "$number2"”

echo "Numberl is equal to Number2"

echo "Number2 is greater than Numberl"

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

https://github.com/lehmannro/assert.sh
https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=0

Last
update:
2022/08/13
22:15

tutoriel:programmation:deboguage:bash:start https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start

Le code ci-dessus recoit deux nombres de I'utilisateur, puis exécute des instructions conditionnelles
pour Vvérifier si le nombre est supérieur, inférieur ou égal a un autre nombre saisi.

Bien que n'importe quel éditeur de texte puisse étre utilisé pour écrire des scripts bash, j'utilise
I'éditeur Vim.

Vim est un éditeur puissant et riche en fonctionnalités qui met I'accent sur la syntaxe des scripts bash
et réduit les risques d'erreurs de syntaxe.

Si vous n'avez pas I'éditeur Vim, installez L.vim
.@...:~$%$ sudo apt install vim

Créez un fichier de script bash en utilisant :
.@...:~ $ vim b script.sh

Si vous étes nouveau dans I'éditeur Vim, je vous recommande d'apprendre a utiliser I'éditeur vim
avant de continuer.

Revenons maintenant au script, exécutez le script en utilisant I'option -v :

...Q...:~ $ bash -v /media/tmp/b script.sh
#! /bin/bash

echo "Enter numberl"

Enter numberl

read numberl

3

echo "Enter number2"

Enter number2

read number2

5

if ["$numberl" -gt "$number2"]
then

echo "Numberl greater than number2"
elif ["$numberl” -eq "$number2"]

then

echo "Numberl is equal to Number2"
else

echo "Number2 is greater than Numberl"
fi

Number2 is greater than Numberl

Sur la sortie ci-dessus, vous pouvez voir que chaque ligne du script est imprimée sur le terminal au
fur et a mesure qu'elle est traitée par I'interpréteur.

Notez que le script s'arrétera pour accepter les entrées de I'utilisateur, puis traitera la ligne suivante
du script

Comme indiqué ci-dessus, I'option -v peut étre placée aprés le shebang, comme indiqué ci-dessous :

https://nfrappe.fr/doc-0/ Printed on 2026/01/07 22:09

https://softoban-com.translate.goog/how-create-simple-shell-scripts-linux-using-vim?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=fr

2026/01/07 22:09

5/14 Comment déboguer un script bash ?

b_script.sh

#! /bin/bash -v

echo
read
echo
read

echo

echo

echo

"Enter numberl"

numberl

"Enter number2"

number?2

“$numberl” -gt "$number2"”

“"Numberl greater than number2"
“$numberl" -eq "$number2"”

“Numberl is equal to Number2"

"Number2 is greater than Numberl"

De méme, un drapeau verbose peut également étre ajouté a la prochaine ligne shebang a l'aide de la

commande set :

b_script.sh

#! /bin/bash

echo
read
echo
read

echo

echo

echo

-V

"Enter numberl"

numberl

"Enter number2"

number?2

"$numberl” -gt "$number2"”

“Numberl greater than number2"
"$numberl" -eq "$number2"”

"Numberl is equal to Number2"

“Number2 is greater than Numberl®

Toutes les méthodes ci-dessus peuvent activer le mode verbose

Comment déboguer un script bash avec I'option xtrace (-x)

Le tracage d'exécution, également connu sous le nom de xtrace, est une option de débogage
intelligente et utile, en particulier pour rechercher les erreurs logiques.

Les erreurs logique

s sont généralement associées a des variables et des commandes.

Pour vérifier I'état d'une variable lors de I'exécution du script, nous utilisons I'option -x.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=1
https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=2

Last
update:
2022/08/13
22:15

tutoriel:programmation:deboguage:bash:start https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start

Maintenant, exécutez a nouveau le fichier b_script.sh avec l'indicateur -x :

..@...:~ $ bash -x /media/tmp/b script.sh
+ echo 'Enter numberl'
Enter numberl
+ read numberl
3
+ echo 'Enter number2'
Enter number2
read number?2

1 [I 3 _eq 5 I] 1
echo 'Number2 is greater than Numberl'
Number2 is greater than Numberl

+
5
+'[" 3 -gt 5]
+
+

La sortie affiche explicitement la valeur de chaque variable pendant le processus d'exécution.

Encore une fois, -x peut étre utilisé derriere le shebang ou apres la ligne shebang en utilisant la
commande set.

Xtrace place un signe + sur chaque ligne du script.
Comment déboguer un script bash avec I'option noexec (-n)

Les erreurs de syntaxe sont I'une des principales causes d'erreurs.

Pour le débogage syntaxique d'un script bash, nous utilisons le mode noexec (pas d'exécution).
Parameétre utilisé pour le mode noexec : -n.

Il n'affichera que les erreurs de syntaxe dans le code, sans I'exécuter.

Une approche beaucoup plus sire du code de débogage.

Exécutez a nouveau b_script.sh avec I'option -n :
..@...:~ $ bash -n /media/tmp/b script.sh

S'il n'y a pas d'erreur de syntaxe, le code ne sera pas exécuté.

Changeons maintenant notre code :

b_script.sh

#! /bin/bash
echo "Enter numberl"
read numberl
echo "Enter number2"

https://nfrappe.fr/doc-0/ Printed on 2026/01/07 22:09

https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=3

2026/01/07 22:09 7/14 Comment déboguer un script bash ?

read number2

if ["$numberl" -gt "$number2"]
then

echo "Numberl greater than number2"
elif ["$numberl" -eq "$number2"]

#then

echo "Numberl is equal to Number2"
else

echo "Number2 is greater than Numberl"
fi

Je commente le then apres elif.

Maintenant exécutez le script b_script.sh avec -n :

..@...:~ $ bash -n /media/tmp/b script.sh
/media/tmp/b script.sh: ligne 12: erreur de syntaxe pres du symbole
inattendu « else »
/media/tmp/b script.sh: ligne 12: “else'

Comme prévu, il a clairement identifié I'erreur et I'a affichée dans le terminal.

Comment détecter les variables non définies lors du débogage d'un script
bash

Une faute de frappe lors de I'écriture de code est une chose courante.
Souvent, vous entrez par erreur une variable, ce qui empéche I'exécution du code.
Pour détecter une telle erreur, nous utilisons I'option -u.

Changeons a nouveau le code :

#! /bin/bash

echo "Enter numberl"

read numberl

echo "Enter number2"

read number?2

if ["$numl" -gt "$number2"]

then

echo "Numberl greater than number2"
elif ["$numberl" -eq "$number2"]

then

echo "Numberl is equal to Number2"
else

echo "Number2 is greater than Numberl"
fi

Tout d'abord, dans I'expression conditionnelle if, j'ai renommé la variable numberl en num1l.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last

;Sg;;g:s/lfi tutoriel:programmation:deboguage:bash:start https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start

22:15

Maintenant num1 est une variable non définie.

Exécutons maintenant le script :

..@...:~ $ bash -u /media/tmp/b script.sh
Enter numberl
4
Enter number2
6
/media/tmp/b script.sh: ligne 6: numl : variable sans liaison

La sortie identifie et affiche explicitement le nom de la variable non définie.
Comment déboguer une partie spécifique d'un script bash

Le mode xtrace traite chaque ligne de code et produit un résultat.

Cependant, trouver des bogues dans un code volumineux prendra du temps si nous savons déja
quelle partie est potentiellement a I'origine du bogue.

Heureusement, xtrace vous permet également de déboguer un morceau de code spécifique, ce qui
peut étre fait avec la commande installed.

Placez set -x au début de la partie que vous devez déboguer, puis set +x a la fin.

Par exemple, pour déboguer les instructions conditionnelles de b_script.sh , enveloppez toutes les
conditions entre set -x et set +x comme indiqué dans le code ci-dessous :

b_script.sh

#! /bin/bash

echo "Enter numberl"

read numberl

echo "Enter number2"

read number2

set -x

if ["$numberl" -gt "$number2"]
then

echo "Numberl greater than number2"
elif ["$numberl” -eq "$number2"]
then

echo "Numberl is equal to Number2"
else

echo "Number2 is greater than Numberl"
fi

set +x

Maintenant lancez le script :

https://nfrappe.fr/doc-0/ Printed on 2026/01/07 22:09

https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=5

2026/01/07 22:09 9/14 Comment déboguer un script bash ?

..@...:~ $ bash /media/tmp/b script.sh
Enter numberl
7
Enter number2
3
+ '["7 -gt 3 ']
+ echo 'Numberl greater than number2'
Numberl greater than number2
+ set +Xx

La sortie est juste un débogage des conditions if comme indiqué.
Comment déboguer un script bash a l'aide de la commande trap

Si votre script est complexe, il existe des méthodes de débogage plus avancées.
L'une d'entre elles est la commande trap.

La commande trap capte les signaux et exécute la commande lorsqu'une situation spécifique se
produit.

La commande peut étre un signal ou une fonction.

J'ai créé un autre script appelé sum_script.sh :

sum_script.sh

#! /bin/bash

trap 'echo "Line ${LINENO}: first number is $numberl, second
number is $number2, and sum is $sum" ' DEBUG

echo "Enter first number"

read numberl

echo "Enter second number"

read number?2

sum = $[numberl + number2]

echo "The sum is $sum"

La commande trap avec le signal DEBUG affiche I'état des variables numberl , number2 et sum
apres l'exécution de chaque ligne, comme illustré dans I'image de sortie suivante :

..@...:~ $ bash sum script.sh

Line 3: first number is , second number is , and sum is
Enter first number

Line 4: first number is , second number is , and sum is
4

Line 5: first number is 4, second number is , and sum is
Enter second number

Line 6: first number is 4, second number is , and sum is
2

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=6

Last
update:
2022/08/13
22:15

tutoriel:programmation:deboguage:bash:start https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start

Line 7: first number is 4, second number is 2, and sum 1is
Line 8: first number is 4, second number is 2, and sum is 6
The sum is 6

Lignes 3, 4, 5, 6 et 7, les espaces apres le mot “is” sont vides car l'utilisateur n'a pas encore entré de
données ; ces espaces seront remplis au fur et a mesure que I'utilisateur saisira les valeurs.

Cette méthode est également tres utile lors du débogage de scripts bash.

Comment déboguer un script bash sans substitution de fichier a I'aide de
I'option -f

La substitution de fichiers est le processus de recherche de fichiers avec des caracteres génériques,
c'est-a-dire * et ?.

Dans de nombreux cas, vous n'avez pas besoin de développer les fichiers pendant le débogage.
Dans de tels cas, vous pouvez bloquer la substitution de fichiers avec I'option -f.

Voyons le script :
fglobe_script.sh
#! /bin/bash

echo "Display all text files"
s “.txt

Le code ci-dessus affichera tous les fichiers texte du répertoire courant :
..@...:~ $ bash fglobe script.sh

Display all text files
Docl.txt Doc2.txt Doc3.txt

Pour désactiver la substitution de fichiers, utilisez I'option -f :
...@...:~ $ bash -f fglobe script.sh
Display all text files
1s: impossible d'accéder a '*.txt': Aucun fichier ou dossier de ce type
De méme, vous pouvez l'utiliser avec un shebang ou avec la commande set :
fglobe script.sh

#! /bin/bash

.

https://nfrappe.fr/doc-0/ Printed on 2026/01/07 22:09

https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=7
https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=8

2026/01/07 22:09 11/14

Comment déboguer un script bash ?

echo "Display all text files"

s *.txt
+f

Exécutez maintenant bash fglobe_script.sh :

...@...:~ $ bash fglobe script.sh
Display all text files

Docl.txt Doc2.txt Doc3.txt
Display all text files

1s: impossible d'accéder a '*.txt':

Aucun fichier ou dossier de ce type

Comment combiner les options de débogage pour déboguer un script shell

Nous n'utilisons qu'une seule option dans les méthodes de débogage ci-dessus, mais nous pouvons

combiner différentes options pour une meilleure compréhension

Implémentons les variantes -x et -v du script sum_script.sh. J'utilise le script sum_script.sh :

script.sh

#! /bin/bash
echo "Enter first number"
read numberl

echo "Enter second number"

read number?2
sum=$/numberl + number?2
echo "The sum is $sum"

Maintenant, lancez :

...@...:~ $ bash -xv sum script.sh
#! /bin/bash

echo "Enter first number"

+ echo 'Enter first number'
Enter first number

read numberl

+ read numberl

4

echo "Enter second number"
+ echo 'Enter second number'
Enter second number

read number2

+ read number2

8

sum=$[numberl + number2]

+ sum=12

echo "The sum is $sum"

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=9

Last

;Sggfgé/la tutoriel:programmation:deboguage:bash:start https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start

22:15

+ echo 'The sum is 12'
The sum is 12

Les sorties -x et -v sont combinées comme indiqué dans l'image de sortie.
De méme, nous pouvons combiner I'option -u avec verbose -v pour détecter les erreurs.

Je remplace la variable numberl par num sur la sixieme ligne du script :

sum_script.sh

#! /bin/bash

echo "Enter first number"
read numberl

echo "Enter second number"
read number?2

sum=$/num + number?2

echo "The sum is $sum"

Pour afficher le résultat, exécutez la commande suivante :

...@...:~ $ bash -uv sum script.sh
#! /bin/bash

echo "Enter first number"

Enter first number

read numberl

5

echo "Enter second number"

Enter second number

read number2

7

sum=$[num + number2]
sum_script.sh: ligne 6: num : variable sans liaison

Comment rediriger le rapport de débogage vers un fichier

L'enregistrement d'un rapport de débogage de script bash dans un fichier peut étre utile dans de
nombreuses situations.

C'est un peu délicat car rediriger le rapport de débogage vers un fichier ; nous utilisons des variables
spéciales.

Implémentons-le sur le code b_script.sh :

#! /bin/bash
exec 5> debug report.log
PS4="'¢$LINENO-- '

https://nfrappe.fr/doc-0/ Printed on 2026/01/07 22:09

https://nfrappe.fr/doc-0/doku.php?do=export_code&id=tutoriel:programmation:deboguage:bash:start&codeblock=10

2026/01/07 22:09 13/14 Comment déboguer un script bash ?

BASH XTRACEFD="5"

echo "Enter numberl"

read numberl

echo "Enter number2"

read number?2

if ["$numberl" -gt "$number2"]
then

echo "Numberl greater than number2"
elif ["$numberl" -eq "$number2"]

then

echo "Numberl is equal to Number2"
else

echo "Number2 is greater than Numberl"
fi

Dans la deuxieme ligne de code, vous pouvez voir que nous redirigeons la sortie vers le fichier
debug_report.log a l'aide de la commande exec avec le descripteur de fichier 5 (FD5).

» exec 5> debug_report.log : Dans exec, la commande redirige tout ce qui se passe dans le
shell vers le fichier debug_report.log.

« BASH XTRACEFD = 5 : variable spécifique a bash qui ne peut étre utilisée dans aucun autre
shell. Un descripteur de fichier valide doit lui étre attribué et bash écrira la sortie extraite dans
debug_report.log.

e PS4="$LINENO- ' : variable bash utilisée pour imprimer le numéro de ligne lors du débogage
en mode xtrace. PS4 par défaut : signe +

Le script ci-dessus crée un fichier journal nommé debug_report.log, pour le lire, utilisez la commande
cat:

..@...:~ $ bash -x b script.sh
+ exec
+ PS4='$LINENO-- '
4-- BASH XTRACEFD=5
Enter numberl
4
Enter number2
5
Number2 is greater than Numberl
..@...:~ $ cat debug report.log
5-- echo 'Enter numberl'
6-- read numberl
7-- echo 'Enter number2'
8-- read number2
9-- '['" 4 -gt 5 ']
12-- '[" 4 -eq 5 ']'
16-- echo 'Number2 is greater than Numberl'

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last
update:
2022/08/13
22:15

tutoriel:programmation:deboguage:bash:start https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start

Pré-requis
Premiere étape
Autres étapes

Conclusion

Un code plein d'erreurs peut affecter les performances du programme ou nuire au matériel.

Le débogage est tres important pour chaque programme car il le rend plus efficace.

La détection de bogues existants et potentiels pendant le développement du programme peut
empécher un comportement inattendu dans votre programme.

Les codes volumineux nécessitent généralement un débogage actif, ce qui améliore I'efficacité du
code en éliminant les fragments de code consommateurs de ressources.

De nombreux langages de programmation et frameworks ont leurs propres débogueurs compagnons.
Les scripts bash peuvent implémenter diverses méthodes de débogage de script.

Ce guide détaille toutes les méthodes qui peuvent étre utilisées pour trouver des erreurs dans les
scripts bash.

Donc, chaque fois que vous sentez que votre script bash ne fonctionne pas comme prévu, utilisez
I'une des méthodes mentionnées ci-dessus, mais dans la plupart des cas, le mode xtrace (-x) est tres
utile.

Problemes connus

Voir aussi

¢ (ru) https://softoban.com/how-debug-bash-script

Basé sur « Comment déboguer un script bash ? » par Auteur.

From:
https://nfrappe.fr/doc-0/ - Documentation du Dr Nicolas Frappé

Permanent link: okygt
https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start "sE=f¥

Last update: 2022/08/13 22:15

https://nfrappe.fr/doc-0/ Printed on 2026/01/07 22:09

https://softoban.com/how-debug-bash-script
https://softoban.com/how-debug-bash-script
https://nfrappe.fr/doc-0/
https://nfrappe.fr/doc-0/doku.php?id=tutoriel:programmation:deboguage:bash:start

	Comment déboguer un script bash ?
	Introduction
	Qu'est-ce qu'un shell sous Linux ?
	Qu'est-ce qu'un script shell ?
	Quelles sont les erreurs dans les scripts bash ?

	Comment déboguer un script bash
	Comment déboguer un script bash avec l'option verbose (-v)
	Comment déboguer un script bash avec l'option xtrace (-x)
	Comment déboguer un script bash avec l'option noexec (-n)
	Comment détecter les variables non définies lors du débogage d'un script bash
	Comment déboguer une partie spécifique d'un script bash
	Comment déboguer un script bash à l'aide de la commande trap
	Comment déboguer un script bash sans substitution de fichier à l'aide de l'option -f
	Comment combiner les options de débogage pour déboguer un script shell
	Comment rediriger le rapport de débogage vers un fichier

	Pré-requis
	Première étape
	Autres étapes
	Conclusion
	Problèmes connus
	Voir aussi

