2026/01/28 04:11 1/7 Syntaxe des expressions régulieres en Python

portail

Syntaxe des expressions régulieres en
Python

La barre oblique inversée \ précede un caractere spécial a utiliser tel quel, sans son utilisation
particuliere.

Syntaxe des expressions régulieres

Une expression réguliere (ou RE) spécifie un ensemble de chaines qui lui correspond.

Les expressions régulieres peuvent étre concaténées pour former de nouvelles expressions régulieres
; si A et B sont deux expressions réguliéres, AB est également une expression réguliere.

La plupart des caracteres ordinaires, comme A, a ou 0 correspondent simplement a leur caractere.
Vous pouvez concaténer des caractéres ordinaires, donc last correspond a la chaine 'last'.

Des caracteres spéciaux, comme | ou (, modifient I'interprétation des expressions régulieres

Les caracteres de répétition (*, +,?, {M, n}, etc.) ne peuvent pas étre imbriqués. Pour appliquer une
seconde répétition a une répétition, vous pouvez utiliser des parentheses. Par exemple, I'expression
(?:a{6})* correspond a un multiple de six caracteres “a”.

Les caractéres spéciaux sont :

. (Point)
Par défaut, cela correspond a n'importe quel caractere sauf une nouvelle ligne.
~ (Fleche haut)
Correspond au début de la chaine
en mode MULTILINE, correspond également immédiatement aprés chague nouvelle ligne.

Correspond a la fin de la chaine ou juste avant la nouvelle ligne a la fin de la chaine, et
en mode MULTILINE, correspond également avant une nouvelle ligne.

foo correspond a “foo” et a “foobar”, tandis que I'expression réguliere foo$ ne
correspond qu’a “foo”.

Plus intéressant : rechercher foo.$ dans 'fool\nfoo2\n' correspond a ‘foo2’ normalement,
mais a ‘fool’ en mode en mode MULTILINE; rechercher un seul $ dans 'foo\n' trouvera
deux correspondances (vides): une juste avant la nouvelle ligne et une a la fin de la
chaine.

correspond a 0 répétition ou plus de I'expression réguliere précédente.
ab* correspond a «a», «ab» ou «a» suivi d'un nombre quelconque de «b».

correspond a une ou plusieurs répétitions de I'expression réguliere précédente.
ab+ correspondr a «a» suivi de tout nombre non nul de «b» ; il ne correspondra pas
simplement a «a».

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

https://nfrappe.fr/doc-0/doku.php?id=tag:portail&do=showtag&tag=portail

Last update: 2022/08/13 portail:programmation:pyregex:start https://nfrappe.fr/doc-0/doku.php?id=portail:programmation:pyregex:start

21:58
?
correspond a 0 ou 1 répétition de I'expression réguliere précédente.
ab? correspond a “a” ou “ab”.
X2, 47,77
"' "4+ and '?' correspondent a autant de texte que possible.
Ce n'est pas toujours ce que I'on souhaite ;
si I'expression réguliere <.*> est comparée a '<a> b <c>', elle correspondra a la chaine
entiere et pas seulement a <a>.
En ajoutant un ? apres le qualificatif, autant de caractéres que possible seront appariés.
L'expression réguliere <.*?> ne correspond qu'a '<a>'.
{m}
correspond a exactement m copies de I'expression précédente ; s'il y a moins de
correspondances, font que I'expression réguliere ne correspond pas.
Par exemple, a{6} correspond a exactement six caracteres “a”, mais pas a cing.
{m,n}
correspond a de m a n répétitions de I'expression précédente, en essayant de faire
correspondre autant de répétitions que possible.
Par exemple, a{3,5} correspondra a de 3 a 5 caracteres “a”.
Omettre m spécifie une limite inférieure égale a zéro et omettre n spécifie une limite
supérieure infinie.
Par exemple, a{4,}b correspond a “aaaab” ou a un millier de caracteres “a"” suivis d'un
“b”, mais pas “aaab”.
La virgule ne peut pas étre omise pour éviter la confusion avec la forme décrite
précédemment.
{m,n}?
correspond a de m a n répétitions de I'expression, en essayant de faire correspondre le
moins possible de répétitions.
Par exemple, sur la chaine de 6 caractéres 'aaaaaa’, a{3,5} correspond a 5 caractéres
'a', alors que a{3,5}? correspond a 3 caracteres.
\

Either escapes special characters (permitting you to match characters like *', '?', and so
forth), or signals a special sequence; special sequences are discussed below.
If you're not using a raw string to express the pattern, remember that Python also uses
the backslash as an escape sequence in string literals; if the escape sequence isn’t
recognized by Python’s parser, the backslash and subsequent character are included in
the resulting string. However, if Python would recognize the resulting sequence, the
backslash should be repeated twice. This is complicated and hard to understand, so it's
highly recommended that you use raw strings for all but the simplest expressions.

(1
Used to indicate a set of characters. In a set:

e Characters can be listed individually, e.g. [amk] will match ‘a', 'm', or 'k'.

e Ranges of characters can be indicated by giving two characters and separating
them by a '-', for example [a-z] will match any lowercase ASCII letter, [0-5][0-9] will
match all the two-digits numbers from 00 to 59, and [0-9A-Fa-f] will match any
hexadecimal digit. If - is escaped (e.g. [a\-z]) or if it's placed as the first or last
character (e.g. [-a] or [a-]), it will match a literal '-'.

 Special characters lose their special meaning inside sets. For example, [(+*)] will
match any of the literal characters '(', '+', "*', or ')".

e Character classes such as \w or \S (defined below) are also accepted inside a set,

https://nfrappe.fr/doc-0/ Printed on 2026/01/28 04:11

2026/01/28 04:11 3/7 Syntaxe des expressions régulieres en Python

(?aiLmsux)

although the characters they match depends on whether ASCII or LOCALE mode is
in force.

e Characters that are not within a range can be matched by complementing the set.
If the first character of the set is ', all the characters that are not in the set will be
matched. For example, ["5] will match any character except '5', and [~ "] will
match any character except '~'. ~ has no special meaning if it's not the first
character in the set.

e To match a literal ']' inside a set, precede it with a backslash, or place it at the
beginning of the set. For example, both [()[\]{}] and [1()[{}] will both match a
parenthesis.

» Support of nested sets and set operations as in Unicode Technical Standard #18
might be added in the future. This would change the syntax, so to facilitate this
change a FutureWarning will be raised in ambiguous cases for the time being. That
includes sets starting with a literal '[' or containing literal character sequences '-',
'&&', '~~', and '[|". To avoid a warning escape them with a backslash.

A|B where A and B can be arbitrary REs, creates a regular expression that will match
either A or B. An arbitrary number of REs can be separated by the '|" in this way. This can
be used inside groups (see below) as well. As the target string is scanned, REs separated
by '|' are tried from left to right. When one pattern completely matches, that branch is
accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the '|' operator is never greedy. To match
a literal '|', use \|, or enclose it inside a character class, as in [|].

Matches whatever regular expression is inside the parentheses, and indicates the start
and end of a group; the contents of a group can be retrieved after a match has been
performed, and can be matched later in the string with the \number special sequence,
described below. To match the literals '(* or')', use \(or\), or enclose them inside a
character class: [(], [)].

This is an extension notation (a '?' following a '(' is not meaningful otherwise). The first
character after the '?' determines what the meaning and further syntax of the construct
is. Extensions usually do not create a new group; (?P<name>...) is the only exception to
this rule. Following are the currently supported extensions.

(One or more letters from the set 'a’, 'i', 'L', 'm', 's', 'u’, 'x".) The group matches the empty
string; the letters set the corresponding flags: re.A (ASCll-only matching), re.l (ignore
case), re.L (locale dependent), re.M (multi-line), re.S (dot matches all), re.U (Unicode
matching), and re.X (verbose), for the entire regular expression. (The flags are described
in Module Contents.) This is useful if you wish to include the flags as part of the regular
expression, instead of passing a flag argument to the re.compile() function. Flags should
be used first in the expression string.

A non-capturing version of regular parentheses. Matches whatever regular expression is
inside the parentheses, but the substring matched by the group cannot be retrieved after
performing a match or referenced later in the pattern.

(?aiLmsux-imsx:...)

(Zero or more letters from the set 'a’, 'i', 'L', 'm', 's', 'u’, 'x', optionally followed by '-'
followed by one or more letters from the ‘i, 'm', 's', 'x".) The letters set or remove the

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last update: 2022/08/13

21:58

portail:programmation:pyregex:start https://nfrappe.fr/doc-0/doku.php?id=portail:programmation:pyregex:start

corresponding flags: re.A (ASClI-only matching), re.l (ignore case), re.L (locale
dependent), re.M (multi-line), re.S (dot matches all), re.U (Unicode matching), and re.X
(verbose), for the part of the expression. (The flags are described in Module Contents.)
The letters 'a’, 'L' and 'u' are mutually exclusive when used as inline flags, so they can’t
be combined or follow '-'. Instead, when one of them appears in an inline group, it
overrides the matching mode in the enclosing group. In Unicode patterns (?a:...) switches
to ASCll-only matching, and (?u:...) switches to Unicode matching (default). In byte
pattern (?L:...) switches to locale depending matching, and (?a:...) switches to ASCll-only
matching (default). This override is only in effect for the narrow inline group, and the
original matching mode is restored outside of the group.

(?P<name>...)

Similar to regular parentheses, but the substring matched by the group is accessible via
the symbolic group name name. Group names must be valid Python identifiers, and each
group name must be defined only once within a regular expression. A symbolic group is
also a numbered group, just as if the group were not named. Named groups can be
referenced in three contexts. If the pattern is (?P<quote>['“]).*?(?P=quote) (i.e.
matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it

in the same pattern itself (?P=quote) (as shown)\ \1

when processing match object m m.group(‘'quote')\ m.end('quote’) (etc.)
in a string passed to the repl\ argument of re.sub()\g<quote>\\g<1>\\1

(?P=name)

A backreference to a named group; it matches whatever text was matched by the earlier
group named name.

A comment; the contents of the parentheses are simply ignored.

Matches if ... matches next, but doesn’t consume any of the string. This is called a
lookahead assertion. For example, Isaac (?=Asimov) will match 'lsaac ' only if it's
followed by 'Asimov'.

Matches if ... doesn’t match next. This is a negative lookahead assertion. For example,
Isaac (?!Asimov) will match 'Isaac ' only if it's not followed by 'Asimov'.

Matches if the current position in the string is preceded by a match for ... that ends at the
current position. This is called a positive lookbehind assertion. (?«<abc)def will find a
match in 'abcdef', since the lookbehind will back up 3 characters and check if the
contained pattern matches. The contained pattern must only match strings of some fixed
length, meaning that abc or a|b are allowed, but a* and a{3,4} are not. Note that
patterns which start with positive lookbehind assertions will not match at the beginning
of the string being searched; you will most likely want to use the search() function rather
than the match() function:

>>> import re

>>> M =

re.search('(?<=abc)def', 'abcdef')

>>> m.group(0)

'def'

https://nfrappe.fr/doc-0/ Printed on 2026/01/28 04:11

2026/01/28 04:11 517 Syntaxe des expressions régulieres en Python

This example looks for a word following a hyphen:

>>> m = re.search(r'(?<=-)\w+', 'spam-egg')
>>> m.group(0)
Ieggl

(?<!..)
Matches if the current position in the string is not preceded by a match for This is
called a negative lookbehind assertion. Similar to positive lookbehind assertions, the
contained pattern must only match strings of some fixed length. Patterns which start with
negative lookbehind assertions may match at the beginning of the string being searched.
(?(id/name)yes-pattern|no-pattern)
Will try to match with yes-pattern if the group with given id or name exists, and with no-
pattern if it doesn’t. no-pattern is optional and can be omitted. For example,
(<)?20\Ww+@\w+(?:\\w+)+)(?(1)>|$) is a poor email matching pattern, which will match
with 'user@host.com' as well as 'user@host.com', but not with '<user@host.com' nor
'user@host.com>'.

The special sequences consist of '\' and a character from the list below. If the ordinary character is not
an ASCII digit or an ASCII letter, then the resulting RE will match the second character. For example,
\$ matches the character '$'.

\number
Matches the contents of the group of the same number. Groups are numbered starting
from 1. For example, (.+) \1 matches 'the the' or '55 55, but not 'thethe' (note the space
after the group). This special sequence can only be used to match one of the first 99
groups. If the first digit of number is 0, or number is 3 octal digits long, it will not be
interpreted as a group match, but as the character with octal value number. Inside the [’
and ']' of a character class, all numeric escapes are treated as characters.

\A
Matches only at the start of the string.

\b
Matches the empty string, but only at the beginning or end of a word. A word is defined
as a sequence of word characters. Note that formally, \b is defined as the boundary
between a \w and a \W character (or vice versa), or between \w and the beginning/end of
the string. This means that r'\bfoo\b' matches 'foo’, 'foo., '(foo)', 'bar foo baz' but not
‘foobar' or 'foo3'. By default Unicode alphanumerics are the ones used in Unicode
patterns, but this can be changed by using the ASCII flag. Word boundaries are
determined by the current locale if the LOCALE flag is used. Inside a character range, \b
represents the backspace character, for compatibility with Python’s string literals.

\B
Matches the empty string, but only when it is not at the beginning or end of a word. This
means that r'py\B' matches 'python’, 'py3', 'py2', but not 'py', 'py.', or 'py!". \B is just the
opposite of \b, so word characters in Unicode patterns are Unicode alphanumerics or the
underscore, although this can be changed by using the ASCII flag. Word boundaries are
determined by the current locale if the LOCALE flag is used.

\d
For Unicode (str) patterns:Matches any Unicode decimal digit (that is, any character in
Unicode character category [Nd]). This includes [0-9], and also many other digit
characters. If the ASCII flag is used only [0-9] is matched. For 8-bit (bytes)
patterns:Matches any decimal digit; this is equivalent to [0-9].

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

mailto:user@host.com

Last update: 2022/08/13
21:58

\D

portail:programmation:pyregex:start https://nfrappe.fr/doc-0/doku.php?id=portail:programmation:pyregex:start

Matches any character which is not a decimal digit. This is the opposite of \d. If the ASCII
flag is used this becomes the equivalent of [~0-9].

\s
For Unicode (str) patterns:Matches Unicode whitespace characters (which includes [
\t\n\n\fiv], and also many other characters, for example the non-breaking spaces
mandated by typography rules in many languages). If the ASCII flag is used, only [
\t\n\r\flv] is matched.
For 8-bit (bytes) patterns:Matches characters considered whitespace in the ASCII
character set; this is equivalent to [\t\n\r\f\v].

\S
Matches any character which is not a whitespace character. This is the opposite of \s. If
the ASCII flag is used this becomes the equivalent of [\t\n\n\fiv].

\w
For Unicode (str) patterns:Matches Unicode word characters; this includes most
characters that can be part of a word in any language, as well as numbers and the
underscore. If the ASCII flag is used, only [a-zA-Z0-9] is matched.
For 8-bit (bytes) patterns:Matches characters considered alphanumeric in the ASCII
character set; this is equivalent to [a-zA-Z0-9_]. If the LOCALE flag is used, matches
characters considered alphanumeric in the current locale and the underscore.

\W
Matches any character which is not a word character. This is the opposite of \w. If the
ASCII flag is used this becomes the equivalent of [~a-zA-Z0-9]. If the LOCALE flag is
used, matches characters considered alphanumeric in the current locale and the
underscore.

\Z
Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular
expression parser:

\a \b \f \n
\r \t \u \U
\V \ X \\

(Note that \b is used to represent word boundaries, and means “backspace” only inside character
classes.)

\u' and '\U' escape sequences are only recognized in Unicode patterns. In bytes patterns they are
errors. Unknown escapes of ASCII letters are reserved for future use and treated as errors. Octal
escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is
considered an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are
always at most three digits in length.

Voir aussi

¢ (en) https://docs.python.org/3/library/re.html

https://nfrappe.fr/doc-0/ Printed on 2026/01/28 04:11

https://docs.python.org/3/library/re.html

2026/01/28 04:11 7/7 Syntaxe des expressions régulieres en Python

Basé sur « Article » par Auteur.

From:
https://nfrappe.fr/doc-0/ - Documentation du Dr Nicolas Frappé

Permanent link: i
https://nfrappe.fr/doc-0/doku.php?id=portail:programmation:pyregex:start iz L=

Last update: 2022/08/13 21:58

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

https://nfrappe.fr/doc-0/
https://nfrappe.fr/doc-0/doku.php?id=portail:programmation:pyregex:start

	Syntaxe des expressions régulières en Python
	Syntaxe des expressions régulières
	Voir aussi

